Puits et sources de CO2 à l’échelle géologique

Depuis le début des années 80, on sait que la teneur en CO2 de l’atmosphère terrestre est en grande partie contrôlée par deux processus. D’une part, le dégazage de la Terre solide libère du CO2 dans l’océan et l’atmosphère (en gros, l’ensemble des processus magmatiques). D’autre part, la dissolution des roches silicatées exposées à la surface absorbe progressivement ce CO2, qui retourne à la Terre solide sous la forme de carbonates de calcium ou de magnésium. L’importance relative de ces deux processus dans l’évolution géologique du climat de la Terre est l’objet d’un débat qui divise les chercheurs. D’un côté, on trouve les tenants d’un rôle prépondérant de la source magmatique dont les variations piloteraient le climat, même si il reste extrêmement difficile de reconstruire ces variations. Face à eux se tiennent les tenants du puits par dissolution des roches, qui soutiennent que c’est son efficacité variable au cours du temps qui est le moteur des changements climatiques aux longues échelles de temps. Mais là aussi se dressent de nombreuses difficultés : la dissolution des roches dépend de nombreux facteurs dont certains sont difficiles à contraindre (végétation, configuration paléogéographique, érosion physique,…).

Dans une étude qui vient d’être publiée dans la revue Geological Magazine, les chercheurs du GET et du CEREGE proposent un compromis. Cette étude utilise toutes les reconstructions disponibles du dégazage magmatique global pour les derniers 540 millions d’années. Concernant le puits de CO2 par dissolution des roches, les chercheurs se focalisent sur le contrôle exercé par la configuration paléogéographique en utilisant le modèle numérique climat-carbone GEOCLIM. Principal résultat de l’étude : les fluctuations de l’efficacité de la consommation de CO2 par dissolution des roches pilotent le niveau de CO2 de 540 à 350 millions d’années, alors que les changements dans la libération de CO2 d’origine magmatique prennent le relai pour la période allant de 250 millions d’années à aujourd’hui. La période de transition s’étalant de 350 à 250 millions d’années est marquée par le rôle conjoint sur la dissolution de l’assemblage de la Pangée et de la surrection de la chaîne de montagnes hercynienne le long de l’équateur.

Contact: Yves Goddéris

Référence

Yves Goddéris and Yannick Donnadieu. A sink- or a source-driven carbon cycle at the geological timescale ? Relative importance of palaeogeography versus solid Earth degassing rate in the Phanerozoic climatic evolution. Geological Magazine, https://doi.org/10.1017/S0016756817001054, 2017.

Plus d'actualités

Découverte de séismes longue période profonds sous les volcans du Massif central

Une étude récente, publiée dans Geophysical Research Letters, révèle des signaux sismiques atypiques sous les volcans du Massif central. Ces signaux, associés à la présence active de magma en profondeur, suggèrent […]

Comprendre la formation des roches rubanées riches en fer

Jusqu’à présent, les scientifiques considéraient que l’absence de microfossiles et la faible quantité de carbone organique dans les formations ferrifères rubanées, déposées il y a entre 2 et 3 milliards […]

Évaluer la qualité de l’air avec des plantes, oui mais pour quels éléments ?

Les plantes épiphytes, qui absorbent leurs nutriments exclusivement dans l’air, sont de bons indicateurs de la composition chimique des particules atmosphériques et sont souvent utilisées dans la littérature comme outils […]

Rechercher