Nouvelles frontières à l’interface fluide-roche
Le CO2 injecté dans les réservoirs géologiques, en acidifiant les eaux de formation, est susceptible d’entraîner des réactions chimiques avec les minéraux contenus dans les roches. Alors que les réactions de précipitation sont susceptibles d’assurer le stockage à long terme du CO2 sous la forme minérale, les réactions de dissolution peuvent au contraire favoriser la migration du CO2 en altérant les propriétés du réservoir, comme sa porosité et sa perméabilité.

Un des enjeux consiste à comprendre comment évoluent dans l’espace et le temps ces interactions entre l’eau, le CO2 et les roches. Si les modèles géochimiques thermo-cinétiques et de transport réactif peuvent retranscrire au mieux les réactions susceptibles de se dérouler dans les conditions de pression et température du réservoir, ceux-ci n’ont pas de visibilité sur ce qui se passe au cœur de la roche, et notamment au niveau de l’interface entre le fluide et les minéraux.
L’absence de prise en compte de la spatialisation (orientation des cristaux, texture de la roche, géométrie de l’espace poral…) et de l’anisotropie de réactivité des minéraux qui forment la roche peut conduire à sous-évaluer ou surévaluer la réactivité chimique et le couplage entre les réactions chimiques et l’évolution des propriétés hydrodynamiques et structurales du réservoir.
Des techniques d’imagerie ultra-performantes permettent désormais d’investiguer en 2D, en 3D, et même en 4D la réactivité minérale au plus proche de l’interface, et ainsi de mieux comprendre les mécanismes réactionnels impliqués.
Ainsi, cette étude de synthèse met l’accent sur les paramètres, observables à l’échelle du pore, qui prennent de plus en plus d’importance dans la compréhension phénomènes couplés chimie-transport et dans la prédiction de l’évolution géochimique, hydrodynamique et structurale des réservoirs, à savoir (i) la réactivité propre de la surface minérale (ii) l’anisotropie de réactivité des minéraux, guidée par la leur structure cristalline, (iii) le contraste de réactivité entre des minéraux (par exemple, entre carbonates et argiles) et (iv) la formation de couches amorphes à la surface de minéraux silicatés, ces deux derniers pouvant altérer grandement le transport des espèces chimiques à proximité de l’interface, en lien avec le développement de couches d’altération microporeuses ou nanoporeuses.
Une meilleure évaluation de ces processus permettra au contraindre au mieux et de renforcer le pouvoir prédictif des outils de modélisation.
Contact : Catherine Noiriel