An up to date list of publications can be found on Google Scholar.
Harrison, A.L., Bénézeth, P., Schott, J., Oelkers, E.H., and Mavromatis, V. (2021) Magnesium and carbon isotope fraction during hydrated Mg-carbonate mineral phase transformations. Geochim. Cosmochim. Acta293: 507–524.
Sader, J.A., Harrison, A.L., McClenaghan, M.B., Hamilton, S.M., Clark, I.D., and Leybourne, M.I. (accepted) Generation of high pH groundwaters and H2gas by groundwater-kimberlite interaction, northeastern Ontario, Canada. Can. Mineral.
Hamilton, J.L., Wilson, S.A., Morgan, B., Harrison, A.L., Turvey, C.C., Paterson, D.J., Dipple, G.M., and Southam G. (2020) Accelerating mineral carbonation in ultramafic mine tailings via direct CO2reaction and heap leaching with potential for base metal enrichment and recovery. Econ. Geol. 115: 303–323.
Power I.M., Dipple G.M., Bradshaw P., and Harrison A.L.(2020) Prospects for CO2 mineralization and enhanced weathering of ultramafic mine tailings from the Baptiste nickel deposit in British Columbia, Canada.International Journal of Greenhouse Gas Control. 94: 102895.
Harrison, A.L., Mavromatis, V., Oelkers, E.H., and Bénézeth, P. (2019) Solubility ofthe hydrated Mg-carbonates nesquehonite and dypingite from 5 to 35°C: Implications for CO2storage and the relative stability of Mg-carbonates. Chem. Geol. 504: 123–135.
Harrison, A.L.,Tutolo, B.M., and DePaolo, D.J. (2019) The role of reactive transport modeling in geologic carbon storage. Elements. 15: 93–98.
McCutcheon, J., Power, I.M., Shuster, J., Harrison, A.L., Dipple, G.M., and Southam, G. (2019) Carbon sequestration in biogenic magnesite and other magnesium carbonate minerals. Environ. Sci. Technol.53: 3225–3237.
Power, I.M., Harrison, A.L., Dipple, G.M., Wilson, S.A., Barker, S.L.L., and Fallon, S.J. (2019) Magnesite formation in playa environments near Atlin, British Columbia, Canada. Geochim. Cosmochim. Acta.255: 1–24.
Yu, L., Daniels, L., Mulders, J.J.P.A, Saldi, G.D., Harrison, A.L., and Oelkers, E.H. (2019) An experimental study of gypsum dissolution coupled to CaCO3precipitation and its application to carbon storage. Chem. Geol.525: 447–465.
Dustin, M.K., Bargar, J.R., Jew, A.D., Harrison, A.L., Joe-Wong, C.M., Thomas,D.L., Brown, G.E. Jr., and Maher, K. (2018) Shale kerogen-hydraulic fracturing fluid interactions and contaminant release. Energy Fuels.32: 8966–8977.
King, P., Wheeler, V., Renggli, C., Palm, A., Wilson, S.A., Harrison, A.L., Morgan, B., Nekvasil, H., Troitzsch, U., Mernagh, T., Kreider, P., DiFrancesco, N.J., Baile, R., and Lipiński, W. (2018) Gas-solid reactions: Theory, experiments, and case studies relevant to Earth and Planetary Processes. Rev. Mineral. Geochem.84: 1–56.
Rigopoulos, I., Harrison, A.L., Delimitis, A., Ioannou, I., Efstathiou, A.M., Kyratsi, T., and Oelkers, E.H.(2018) Carbon sequestration via enhanced weathering of peridotites and basalts in seawater. Appl. Geochem. 91:197–207.
Harrison, A.L., Dipple, G.M., Song, W., Power, I.M., Mayer, K.U., Beinlich, A., and Sinton, D. (2017) Changes in mineral reactivity driven by pore fluid mobility in partially wetted porous media. Chem. Geol.463: 1–11.
Harrison, A.L., Jew, A.D., Dustin, M.K., Thomas, D.L., Joe-Wong, C.M., Bargar, J.R., Johnson, N.C., Brown, G.E. Jr., and Maher, K. (2017) Element release and reaction-induced porosity alteration during shale-hydraulic fracturing fluid interactions.App. Geochem.82: 47–62.
Jew, A.D., Dustin, M.K., Harrison, A.L., Joe-Wong, C.M., Thomas, D.L., Maher, K., Brown, G.E. Jr., and Bargar, J.R. (2017) Impact of organics and carbonates on the oxidation and precipitation of iron during hydraulic fracturing of shale.Energy Fuels.31: 3643–3658.
Mavromatis, V., Harrison, A.L., Eisenhauer, A., and Dietzel, M. (2017) Strontium isotope fractionation during strontianite (SrCO3) dissolution, precipitation, and at equilibrium.Geochim. Cosmochim. Acta. 218: 201–214.
Harrison, A.L., Dipple, G.M., Power, I.M., and Mayer, K.U. (2016) The impact of evolving mineral-water-gas interfacial areas on mineral-fluid reaction rates in unsaturated porous media. Chem. Geol.421: 65–80.
Power, I.M., Harrison, A.L., and Dipple, G.M. (2016) Accelerating mineral carbonation using carbonic anhydrase. Environ. Sci. Technol.50: 2610–2618.
Harrison, A.L., Dipple, G.M., Power, I.M., and Mayer, K.U. (2015) Influence of surface passivation and water content on mineral reactions in unsaturated porous media: Implications for brucite carbonation and CO2sequestration. Geochim. Cosmochim. Acta.148:477–495.
McCutcheon, J., Power, I.M.,Harrison, A.L., Dipple, G.M., and Southam, G. (2014) A greenhouse-scale photosynthetic microbial bioreactor for carbon sequestration in magnesium carbonate minerals. Environ. Sci. Technol.48: 9142–9151.
Power, I.M., McCutcheon, J., Harrison, A.L., Wilson, S.A., Dipple, G.M., Kelly, S., Southam, C., and Southam, G. (2014) Strategizing carbon-neutral mines: A case for pilot projects. Minerals.4: 399–436.
Power, I.M., Wilson, S.A., Harrison, A.L., Dipple, G.M., McCutcheon, J., Southam, G., and Kenward, P.A. (2014) A depositional model for hydromagnesite-magnesite playas. Sedimentology.61: 1701–1733.
Wilson, S.A., Harrison, A.L., Dipple, G.M., Power, I.M., Barker, S.L.L., Mayer, K.U., Fallon, S.J., Raudsepp, M., and Southam, G. (2014) Offsetting of CO2emissions by air capture at the Mount Keith Nickel Mine, Western Australia: Rates, controls and prospects for carbon neutral mining. Int. J. Greenhouse Gas Control.25: 121–140.
Harrison, A.L., Power, I.M., and Dipple, G.M. (2013) Accelerated carbonation of brucite in mine tailings for carbon sequestration. Environ. Sci. Technol. 47: 126–134.
Power, I.M., Harrison, A.L., Dipple, G.M.,Wilson, S.A., Kelemen, P.B., Hitch, M., and Southam, G. (2013) Carbon mineralization: From natural analogues to engineered systems. Rev. Mineral. Geochem.77: 305–360.
Power, I.M., Harrison, A.L., Dipple, G.M., and Southam, G. (2013) Carbon sequestration via carbonic anhydrase facilitated magnesium carbonate precipitation. Int. J. Greenhouse Gas Control.16: 145–155.
Thom, J.G.M., Dipple, G.M., Power, I.M., and Harrison, A.L.(2013) Chrysotile dissolution rates: Implications for carbon sequestration. Appl. Geochem. 35: 244–254.